How Should Juvenile Salmonid Mortality Rate Responses to Tailrace TDG be Assessed in Evaluation of Dam Passage Options?

Eric Parkinson¹, Tom Porteus¹, Norman Buccola², Christopher Nygaard², Hanbyeol Jang¹ and Murdoch McAllister¹

¹UBC ²USACE

Estimating TDG Mortality: Conceptual Model

Goal: Estimate the response of Chinook and Steelhead populations to TDG supersaturation under each Operational Alternative

Estimating TDG Mortality: Conceptual Model

Why do this? - Lab Risk ≠ River Risk

Pleizier et al. 2020 Fish in deeper tanks experience are not as susceptible to the effects of TDG

Four Processes: Two Are Not well Documented

- 1. TDG Generation
- 2. TDG Dissipation
- 3. Fish Behavior
- 4. Lab tolerance

Allen 2000 Seasonal Microhabitat Use by Juvenile Spring Chinook in the Yakima R

Kamal et al. 2019 Dissipation of TDG in the Intermediate Mixing Zone of a Regulated River

TDG Dissipation:

Calibrate Kamal et al. 2019 to Willamette Tributaries

North Santiam at Niagara					
At Discharge = 42.5 cms					
	Velocity m/sec	Depth m	Depth /Velocity	inst k min-1	% retained
Sement 1	1.24	0.53	0.42	0.03	99.2%
Sement 2*	1.90	0.31	0.16	0.09	94.9%
Sement 3	1.14	0.52	0.46	0.02	97.0%

* High Dissipation Segment

Reach TDG Retention

= Product (segment retentions)

Note: Low downstream TDG = High Dissipation

• Dissipation is faster in the North Santiam

Predictions:

Predicted TDG is higher than Observed especially at high TDS

• Note: Low downstream TDG = High Dissipation

USGS data vs. PNNL 2016-17; South Santiam River

- Observed dissipation is lower than for the USGS data set*
- Compare 5 data points with USGS at a similar discharge range
- PNNL data: Similar predictions, higher observed
 - Implies that dissipation was low during the PNNL study

*Low TDG = High Dissipation

Bubble and Turbulence Effects?

Four Processes

- 1. TDG Generation
- 2. TDG Dissipation
- **3. Fish Behavior** – Depth Choice
- 4. Lab tolerance

Allen 2000 Seasonal Microhabitat Use by Juvenile Spring Chinook in the Yakima R

Fish Behavior and Depth Compensation In deep water, dissolved gases remain in solution under pressure

- There is a similar issue with Scuba divers ("the bends")
- About 10% TDG Compensation for 1 meter in depth or 3% per foot
- Highest TDG are at high flows
- Fish potentially have a depth refuge, especially at high flows
- <u>Do they use it?</u> Experiments have had mixed results.
- Fish <u>do not</u> seem to detect TDG concentration directly.

Depth Compensation: e.g. Chinook <u>Eggs</u> below Big Cliff Dam

- Egg Capsule Pressure(before hatching):7-12% TDG
 - Alderdice and Jensen 1985
- Burial depth: 19-40 cm (2-4% TDG)
 - DeVries 1997
- Spawning Depth: 30-60 cm (3-6%)
 - Raliegh 1986
- Increase in water depth with discharge: 0-2.5m (0-24%)
 - Hydraulic modeling & Pleizeir et al. 2020

Fish Behavior: Depth Choice

Small Chinook generally use shallow water

▶0.0-1.5 m, deeper in fall & winter▶0-15% TDG depth compensation

Are there exceptions to this rule

- 1. Observations in Willamette Basin traps
- 2. High Flow events
- 3. Migration
- 4. Buoyancy cues
- 5. Physical displacement downstream or to deeper water?

Allen 2000 Yakima R

Exceptions: Observed TDG Incidence:

- Rotary screw trap (RST) data from below Big Cliff dam has gas bubble trauma (GBT) incidence
- Binomial Regression: GBT incidence =f(hydrological variables)
- <u>No effect</u> of mean TDG during trap events
- <u>Significant effect (+20%)</u> with maxTDG during driven by TDG values >130%
- RST data are worst case scenario as fish are held at surface so cannot depth compensate

Exceptions: Observed TDG Incidence:

TDCCI aval (0/)

Exceptions: High Flow Events:

• Hydro peaking

- Korman and Campana 2009, 2011: Colorado River Rainbow Trout on low angle habitat do not move at peak flows
- Pert 1994: 2 patterns; Some rainbow move, some stay deep
- Natural flow variation
 - In a small stream, coho or chinook used similar depths at 4X higher flows (Shirvell 1994)

South Santiam Foster Guage

Exceptions: Migration vs Rearing Depth Preference

Exceptions:

Buoyancy and the Detection of TDG by Fish

- Pleizier 2021: Measured short term avoidance in <u>shallow</u> flumes. Choice was 100% versus 145% TDG
 - "fish cannot detect and avoid harmful TDG supersaturation using lateral movements during an acute exposure.."
- Pleizier 2021 also reviewed 19 previous studies of which 15 showed some avoidance behavior. Differences seem to be due to:
 - Avoidance may occur after 1-3 days of exposure
 - In high-TDG, deep tanks, fish detect positive buoyancy and move deeper (Shrimpton 1990)

Estimating TDG Mortality: Conceptual Model

Summary

• TDG prediction looks promising

- A dissipation model is essential in modeling spatial differences in exposure
- Used to estimate mortality at different locations
- The depths available in the North and South Santiam could be used by fish to avoid Gas Bubble Trauma
 - It is not clear if fish actually depth compensate
 - At low flows, small Chinook and Steelhead clearly prefer shallow water
 - Quantifying depth distributions at moderate to high flow requires telemetry data
 - GBT data from screw traps is puzzling
 - lower than expected incidence
 - High TDG does not necessarily mean High GBT

Depth Compensation: Chinook <u>after hatching</u> below Big Cliff Dam

- Burial depth: 19-40 cm (2-4% TDG)
 - DeVries 1997
- Spawning Depth: 30-60 cm (3-6%)
 - Raliegh 1986
- Increase in water depth with discharge: 0-2.5m (0-24%)
 - Hydraulic modeling & Pleizeir et al. 2020

